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Prediction of distance in hammer throwing
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The aim of this study was to determine how much the predicted distance of a hammer throw is affected by (1)
ignoring air resistance and (2) assuming that the centre of mass of the hammer coincides with the centre of the
ball. Three-dimensional data from actual throws (men: 72.82+7.43 m; women: 67.78 +4.02 m) were used to
calculate the kinematic conditions of the hammer at release. A mathematical model of the hammer was then
used to simulate the three-dimensional airborne motion of the hammer and to predict the distance of the throw.
The distance predicred for vacuum conditions and using the ball centre to represent the hammer centre of mass
was 4.30+2.64 m longer than the official distance of the throw for the men and 8.824 3.20 m longer for the
women. Predictions using the true centre of mass of the hammer reduced the discrepancy to 2.39 +2.58 m for
the men and 5.28 +2.88 m for the women. Predictions using air resistance and the true centre of mass of the
hammer further reduced the discrepancy to —0.46+2.63 m for the men and 1.16+2.31 m for the women.
Approximately half the loss of distance produced by air resistance was due to forces made on the ball and the
remainder to forces made on the cable and handle. Equations were derived for calculation of the effects of air
resistance and of the assumption that the centre of mass of the hammer coincides with the centre of the ball, on
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the distance of the throw.
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Introduction

The distance of a hammer throw is determined by the
kinematic conditions of the hammer at release, in
particular the velocity vector of the centre of mass,
and by the aerodynamic forces exerted on the hammer
during the flight. If the distance of a throw is
estimated from the velocity and location of the centre
of mass at release without taking air resistance into
account, this will vield an overestimate of the distance
of the throw.

There are marked discrepancies in the current
literature regarding the magnitude of the effects of
aerodynamic forces on the distance of hammer throws.
Hubbard (1989) modelled the men’s hammer ball,
cable and handle, and derived an analytical solution
that led him to estimate that air resistance would reduce
the distance of a 90 m throw to approximately 84.3 m,
a difference of 5.7 m. Soon afterwards, de Mestre
(1990) developed a somewhat different analytical
solution using a model that predicted smaller air
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resistance forces than Hubbard’s model. De Mestre
did not report specific values for the effects of air
resistance on hammer throwing distances, but his
equations and parameters can be used to predict that
air resistance would reduce the distance of a throw from
85.9 m to 84.3 m. The difference of only 1.6 m is much
smaller than that predicted by Hubbard. Neither author
validated the predictions against data gathered from
actual throws.

It is common practice in studies of hammer throwing
to assume that the velocity vector of the centre of the
hammer ball at release is representative of the velocity
vector of the centre of mass of the hammer. However,
due to the mass of the cable and handle, the centre of
mass is located slightly proximal from the centre of the
ball. Because of the hammer’s rotation, at the instant of
release the linear velocity of the centre of the ball is
larger than the linear velocity of the hammer centre of
mass. Consequently, the assumption that the linear
velocity of the hammer ball represents the linear
velocity of the hammer centre of mass will further
inflate the predicted distance of the throw.

The aims of this study were to determine (1) the
effect of air resistance on the distance of the hammer
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throw and (2) the amount of error that is introduced in
the prediction of the distance based on the assumption
that the centre of mass of the hammer coincides with
the centre of the ball. The results were validated using
data based on actual throws.

Methods

The hammer used in track and field athletics consists of
a spherical metal ball with a handle attached to it
through a cable (Fig. 1). Measurements taken from a
standard hammer were used to produce a mathematical
model. The ball was modelled as a sphere (diameter of
120 mm for the men’s hammer and 102.5 mm for the
women’s hammer) (IAAF, 1988). The cable and handle
are identical in the men’s and women’s hammers. The
cable was modelled as three cylinders arranged in series
(diameters of 6, 3 and 6 mm; lengths of 150, 687 and
150 mm, respectively). The handle was modelled as six
cylinders, five of which (diameters of 8 mm; lengths of
62, 30, 117, 30 and 62 mm, respectively) formed an
open pentagon closed by the sixth cylinder (diameter of
8 mm; length of 27 mm), which served as an attach-
ment to the cable (see Fig. 1).

Volumes and areas were calculated for all elements
of the model. Masses for all cable and handle elements
were calculated from their respective volumes and the

men's hammer

Dapena et al.

known density of steel (7.83 kg1 ') (Byars and Snyder,
1975). Masses and distances were used to calculate the
distance from the centre of the ball to the centre of mass
of the hammer (26 mm for the men’s hammer and
47 mm for the women’s hammer) and the moment of
inertia of the hammer about a transverse axis passing
through the centre of mass.

The drag coefficient for the ball, Cpp, was estimated
at 0.42, based on experimental data for smooth spheres
(Schlichting, 1960) and approximate Reynolds num-
bers of 2.0 x 10” for men and 1.7 x 10 for women. The
drag coefficients for the single cable, twined cable and
handle cylinders, Cp ¢, were estimated at 1.00, 1.12 and
1.12, respectively, based on experimental data for
smooth circular cylinders (Schlichting, 1960) and
approximate Reynolds numbers of 5.0 x 10%, 1.0 x 10*
and 1.35 x 10* respectively.

The hammer throwing data were taken from
previous research (e.g. Dapena, 1986). The data
consisted of the three-dimensional coordinates of four
body landmarks (two wrists and two knuckles) and of
the centre of the hammer ball in 29 throws (23 by
males; 6 by females) from four competitions and one
training session. The throws were recorded at 50
images per second with two video or 16 mm motion-
picture cameras. The positions of the five landmarks
were digitized in every image of the two cameras. The
non-linear transformation method (Dapena er al., 1982;
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Fig. 1. Characteristics of typical men’s and women’s hammers. All lengths and diameters are in millimetres. The centre of mass of
each hammer is indicated by the cross on the white circle. The cable is attached to the handle and ball through loops and twines
around itself for about 150 mm at both ends. m =mass; I-n; = the moment of inertia of the hammer about a transverse axis passing

through the centre of mass.
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Dapena, 1985) was used to compute three-dimensional
coordinates for three of the sessions; the direct linear
transformation method (Abdel-Aziz and Karara, 1971;
Walton, 1981) was used for the remaining two sessions.
Quintic spline functions (Wood and Jennings, 1979)
were fitted to the raw three-dimensional location values
of the five landmarks to compute their instantaneous
locations and velocities at the approximate instant of
release, which generally occurred between frames. To
prevent the possible introduction of systematic errors,
the spline functions were applied with zero smoothing.

The angular velocity vector of the hammer at the
instant of release was computed as the angular velocity
of the line joining the centre of the hammer ball and the
average position of the wrists and knuckles at the instant
of release. The linear velocity vector of the centre of the
hammer ball, the angular velocity vector of the hammer,
and the location vector of the hammer centre of mass
relative to the centre of the ball at the instant of release
were used to calculate the linear velocity vector of the
hammer centre of mass at the instant of release.

The conditions of the hammer at release were used
to produce three separate kinds of simulations for the
flight of the hammer. For the first simulation, we
assumed that the location and velocity vectors of the
ball centre at release represented the location and
velocity vectors of the hammer centre of mass. Their
values were input to the standard equations of airborne
motion in a vacuum to estimate the hypothetical
distance of the throw in the absence of aerodynamic
forces. The distance predicted by this simulation was
denoted by Rgy.

The second simulation was similar to the first, but
used the true location and velocity of the hammer
centre of mass at release. The distance predicted by this
simulation was denoted by Rgy.

The third simulation considered the true location
and velocity of the centre of mass of the hammer at
release, as well as the hammer’s three-dimensional
orientation and angular velocity vector at release, and
the aerodynamic forces exerted on the hammer ball,
cable and handle during the airborne phase. For this
simulation, each twined cable section was further
subdivided into two equal subsections, and the simple
cable section was subdivided into eight subsections of
equal length.

The drag force exerted by the air on the ball was
calculated using the following equation:

Fpg = 0.5 p Cpg Ag 1/° (1)

where p is the estimated density of air at 25°C
(1.175 kgm ) (see Dapena and Feltner, 1987), Ay is
the projected area of the ball and v is the magnitude of
the instantaneous velocity of the still air relative to the
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ball. Vector Fpy pointed in the direction of the airflow
relative to the ball.

The force exerted by the air on each cable and
handle cylinder was calculated using the following
equation:

]“C = 0.5 P CDC AC. Hz (2}

where A¢ is the projected lateral area of the cylinder
and v is the magnitude of the component of the
instantaneous relative airflow in the direction perpen-
dicular to the longitudinal axis of the cylinder. Vector
F. was perpendicular to the longitudinal axis of the
cylinder and was contained in the plane defined by the
longitudinal axis and the relative airflow.

The torque vector T exerted by each aerodynamic
force F relative to the centre of mass of the hammer was
calculated using the equation

T=¢rxF (3)

where » is the vector pointing from the hammer centre
of mass to the centre of the hammer element on which
the aerodynamic force was exerted.

The aerodynamic forces and the weight of the
hammer were added to calculate the resultant force
vector LF exerted on the hammer; the torques exerted
by the aerodynamic forces were added to calculate the
resultant torque vector LT exerted on the hammer.

The instantaneous linear and angular accelerations
of the hammer (a and a, respectively) were calculated
using the following equations:

a=> F/m (4)
a=3"T/lcm (5)

where m is the total mass of the hammer (7.26 kg for
the men’s hammer and 4 kg for the women’s hammer)
and [Ipy 1s the moment of inertia of the hammer about a
transverse axis passing through the centre of mass
(0.2027 kg:m” for the men’s hammer and 0.1892 kg-m?
for the women’s hammer).

We assumed that the linear and angular accelerations
remained constant for a short time interval (Ar) after
release. This permitted the calculation of estimated
values for the location and linear velocity of the hammer
centre of mass, and orientation and angular velocity of
the hammer, at the end of the interval. In turn, the new
linear velocity, orientation and angular velocity values
were used to calculate new instantaneous linear and
angular accelerations at the end of the interval. These
updated accelerations were then assumed to remain
constant for a subsequent Ar interval. The process was
repeated until the centre of mass of the hammer
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reached ground level. The distance of the throw
predicted by this simulation was denoted by Rga.
Values of Ar between 1.0 and 0.001 s were tested. The
decrease in the value of Ar from 0.01 s to 0.001 s was
found to change the predicted distance of a 74 m throw
by only 0.005 m. The value Ar=0.01s was thus
established as a good compromise between accuracy
and computer time expenditure and was adopted for all
simulations.

Since hammer throws are measured to the nearest
edge of the mark made on the ground by the ball, in all
simulated throws the predicted distance of the throw
(Rpv, Rgv and Rga) was reduced by a correction
distance AR = dg/(2-sin (), where dg 1s the diameter of
the hammer ball and 0y is the angle between the
horizontal plane and the velocity vector of the hammer
at the instant of landing.

Results

Table 1 shows the official distances of the throws and the
distances predicted by the three different computer
simulations. The distance predicted for vacuum condi-
tions using the ball centre to represent the hammer
centre of mass (Rpy) was 4.30 + 2.64 m longer than the
official distance of the throw for the men and
8.82+3.20 m longer for the women (see Figs 2a,b).
Predictions using the true centre of mass of the hammer
and vacuum conditions (Rgy) reduced the discrepancy
regarding the official distance of the throw (differences of
2.39+2.58 m for the men and 5.28+2.88 m for the
women). Predictions using the true centre of mass of the
hammer and air resistance (Rga) reduced still further the
discrepancy regarding the official distance of the throw:
differences of —0.464-2.63 m for the men and
1.164+2.31 m for the women (see Figs 2¢,d).

Figure 3a,b shows the relationship between the effect
of air resistance on the distance of the throw

Table 1. Distances of the throws (mean+5)

Distance thrown (m)

Men Women
R 72.82+7.43 67.78 +4.02
Ry 77.1247.13 76.60+6.64
Rav 75.21 +6.95 73.06+6.31
Rea 72.36+6.42 68.94+5.64

Note: R=official distance; Rpy = predicted distance in a vacuum,
using the ball centre to represent the hammer centre of mass;
Ry = predicted distance in a vacuum, using the true centre of mass;
Ria =predicted distance in air, using the true centre of mass.
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(Rgv—Rga) and the official distance of the throw
(R). Theoretical considerations based on Lichtenberg
and Wills (1978) indicated that this relationship should
be approximately quadratic. Accordingly, a quadratic
equation passing through the origin was fitted to the
data points.

Figure 3c,d shows the relationship between the
overestimate in the predicted distance of the throw
based on the assumption that the centre of the ball
represents the centre of mass of the hammer
(Rpv— Rgv) and the official distance of the throw (R).
Theoretical considerations indicated that this relation-
ship should be approximately linear. Accordingly, a
straight line passing through the origin was fitted to the
data points.

The official distance of a throw can be input into the
equations shown in Fig. 3 to estimate the distance that
would have been achieved if the throw had taken place
in a vacuum and if the kinematic conditions of the
centre of the hammer ball at release had represented the
kinematic conditions of the centre of mass.

Discussion and sensitivity tests

Figures 2a and 2b and the difference between the mean
values of Rpy and R in Table 1 indicate that neglecting
the effect of air resistance and assuming that the centre
of the hammer ball represents the centre of mass of the
hammer will lead to greatly inflated predictions of the
distances of hammer throws (Rpy). The validity of the
model developed in this study was supported by the
small sizes of the residual discrepancies between the
official distances (R) and the distances predicted by the
full model in men’s and women’s throws (Rga) (see
Table 1 and Figs 2c,d).

The remaining differences between the official
distances (R) and the distances predicted by the model
(Ria) were due only in part to imperfections in the
model; they were also due to random and systematic
errors in the calculation of release conditions and to the
unknown wind conditions during the recording ses-
sions. Random errors in the digitization of the hammer
ball, knuckles and wrists produced random errors in the
esimates of release conditions for each trial and,
therefore, random errors in the model’s predictions of
distances for individual throws. Lens distortion and
random errors in the digitizatdon of the control object
used for three-dimensional analysis produced systema-
tic errors in the estimates of release conditions for each
separate recording session. Because of the systematic
errors, the trials of any particular session may show a
consistent bias that overpredicts or underpredicts the
distances of the throws. Wind conditions were not
monitored during the recording sessions and, therefore,
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Fig. 2. Distances predicted for vacuum conditions with the ball centre representing the centre of mass of the hammer (Rgy) (a,b),
and for air resistance conditions using the true centre of mass of the hammer (R, ) (c,d), versus the official distances of the throws
(R). The diagonal lines are identity lines. The various symbols represent different recording sessions.

the model was run with the assumption of zero wind for
all predictions. Prevailing headwinds or tailwinds
during any given recording session will have reduced
or increased, respectively, the measured distances of the
throws in that session in relation to the distance
predicted by the model. Owing to all these sources of
error, it is not surprising that there were discrepancies
for individual trials or recording sessions.

Figures 3a and 3b show that the effect of air
resistance is smaller in the men’s hammer than in the
women’s hammer. This is because mass increases in
proportion to the cube of linear dimensions, while

frontal area — and, therefore, air resistance force —
increases in proportion to the square of linear dimen-
sions. Thus, the increase in the air resistance force from
the women’s hammer to the men’s hammer is smaller
than the increase in the mass of the hammer. Conse-
quently, the ratio of air resistance to mass is smaller for
the men’s hammer, and so is the effect of air resistance
on the distance of the throw.

Figures 3¢ and 3d show that the assumption that the
centre of the ball represents the centre of mass of the
hammer has less of an effect on the distance of the
throw in the men’s hammer than in the women’s
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Fig. 3. Effect of air resistance on the distance of the throw (Rgy— Ria) and overestimation in the predicted distance of the throw
based on the assumption that the centre of the ball represents the centre of mass of the hammer (Rpy — Rev), both as functions of

the official distance of the throw (R).

hammer. This is because the ball has a larger mass in
the men’s hammer than in the women’s hammer, while
the cable and handle are the same. Consequently, the
distance from the hammer centre of mass to the centre
of the ball is smaller in the men’s hammer, as are the
overestimates of the hammer velocity at release and of
the predicted distance of the throw.

The Reynolds numbers for the men’s and women’s
hammer balls are about 2.0x10° and 1.7 %107,
respectively. The relationship between the drag coeffi-
cient Cp, and the Reynolds number is reasonably well
known for smooth spheres (Schlichting, 1960; Hoerner,
1965; Achenbach, 1974). The drag coefficient has a
fairly stable value (0.4-0.5) for Reynolds numbers
between approximately 1x 107 and 2.5 x 10°. This is
followed by a ‘critical’ region in which it drops steeply
to a value of about 0.09 ar a Reynolds number of
4 x 10°. Given the Reynolds numbers of the men’s and
women’s hammer balls, they might be viewed as being

clearly in the subcritical range. However, surface
roughness is a confounding issue, since it tends to
reduce the critical Reynolds number (Hoerner, 1965;
Achenbach, 1974). The roughness of the hammer ball’s
surface is not known exactly; it is unclear, therefore,
whether the hammer ball is above or below the critical
Reynolds number. De Mestre (1990) assumed that the
men’s hammer ball is above the critical Reynolds
number during throwing. Accordingly, he proposed a
rather low drag coefficient for it (Cp~ 0.34, inferred
from other values reported by de Mestre, 1990).
Hoerner (1965) and Achenbach (1974) reported rather
large drag coefficients of about 0.50 for spheres in the
subcritical region, while Schlichting (1960) reported a
Jower value for the same region. Schlichting’s drag
coefficient of 0.42 was adopted in the present study
because it lay between the large subcritical values
reported by Hoerner (1965) and Achenbach (1974) for
smooth spheres (Cp~50) and the lower value that de
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Mestre (1990) proposed for the men’s hammer ball
(Cp=0.34). A sensitivity test was carried out to assess
the effect of this choice on the predictions of the model.

Simulations using the full model with drag co-
efficients of 0.50 and 0.34 for the hammer ball in a
mid-range throw with the men’s hammer (official
distance =72.62 m) produced a 0.27 m decrease and
a 0.27 m increase, respectively, in the distance of the
throw in relation to the result produced with the
standard drag coefficient of the model (Cp=0.42).
These differences amounted to only 10% of the total
effect of air resistance in this throw (2.77 m). A second
sensitivity test was carried out to establish the reason for
such a small effect.

The same throw was simulated using various air
resistance conditions for the ball and for the cable and
handle, and the following reductions were found in the
distance of the throw (relative to the distance produced
without any air resistance): simulation using air
resistance only on the ball, 1.53 m; air resistance only
on the cable and handle, 1.31 m; air resistance on ball,
cable and handle, 2.77 m. The effects were almost
additive. They showed that the aerodynamic force
exerted on the cable and handle accounts for approxi-
mately 46% of the total effect of air resistance on the
distance of the throw for the men, leaving the remaining
54% for the ball. The difference between Schlichting’s
drag coefficient of 0.42 and the other potential drag
coefficients of 0.50 and 0.34 (0.08 in either direction)
represents a 19% difference in the air resistance force
exerted on the ball. Since 19% of 54% is 10% of the
total, this fits quite well with the value reported in the
previous paragraph. It indicates that a given percent
change in the air resistance force produces a similar
percent change in the air-induced reduction in the
distance of the throw,

Similar tests were carried out for a mid-range throw
with the women’s hammer (official distance =
65.86 m). Simulations using drag coefficients of 0.50
and 0.34 for the hammer ball produced a 0.30 m
decrease and a 0.31 m increase, respectively, in the
distance of the throw in relation to the result produced
with the standard drag coefficient of the model. These
differences amounted to 8% of the total air resistance
effect in this throw (3.70 m), slightly less than for the
men. The reason for this was that the relative effects of
the aerodynamic forces exerted on the ball and on the
cable and handle were reversed with respect to the
men: the forces exerted on the cable and handle
accounted for approximately 54% of the total effect of
air resistance on the distance of the throw for the
women, leaving only 46% for the ball (decreases in
distance due to effects of forces: on ball, 1.77 m; on
cable and handle, 2.05 m; on ball, cable and handle,
3.70 m).
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The critical Reynolds number for the drag
coefficient of cylinders is about 2 x 10’ (Schlichting,
1960; Hoerner, 1965). This is much larger than the
Reynolds numbers of the cylinders that make up the
hammer’s cable and handle (5.0 x 10 to 1.35 x 10%).
The hammer model’s cylinders are clearly in the
subcritical region, regardless of any possible roughness
(see Hoerner, 1965), and their drag coefficients are
not in doubt.

Hubbard (1989) modified an equation developed
by Lichtenberg and Wills (1978) and used it to
estimate the effect of air resistance on the distance of
a hammer throw. He predicted that air resistance
would reduce the distance of a 90 m vacuum throw by
about 5.7 m to produce an 84.3 m throw. In contrast,
the equaton that estimates the effect of air resistance
in  men’s throws according to our model
(Rgy — RGa=0.00052900 R*) predicts that a throw
measured officially at 84.3 m would have been
shortened 3.8 m (from a vacuum distance of 88.1 m)
by air resistance. Therefore, Hubbard’s prediction of
the effect of air resistance was about 50% larger than
the prediction of our model.

De Mestre (1990) did not report specific values for
the effects of air resistance on hammer throwing
distances. However, his equations can be used to
make predictions. We input an initial trajectory angle
of 42, a release height of 1.40 m and a wide variety of
release velocities into de Mestre’s equation (8.1) to
estimate throw distances in the presence of air. His
equation (8.1) requires a value for the expression
e=05pCp A vo-/mg. A value of 0.02 was assigned by
de Mestre to this expression for a hammer with an
initial velocity v, of 25 ms '. For each throw, we
adjusted the value of the expression in proportion to
the square of the initial velocity, since the other
elements in the expression should remain constant. By
trial and error, we found that an inital velocity 2, of
28.84 m:s ' would be needed to produce a throw of
84.3 m. The conditions of this throw at release were
subsequently used to calculate the distance that it
would have reached in a vacuum. The result was
85.9 m, which would imply an air resistance effect of
1.6 m on the distance of the throw. This was about
60% smaller than the 3.8 m effect predicted by our
model.

Although the predictions of our simulation model
fit quite well with the results of actual throws, the
predictions of the effects of air resistance by Hub-
bard’s and de Mestre’s models were larger and
smaller, respectively, than those of our model. This
suggests that Hubbard’s and de Mestre’s models
overestimate and underestimate, respectively, the
effect of air resistance on the distance of hammer
throws.
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Conclusions

We have shown that there is a large difference between
the measured distance of a hammer throw and the
distance predicted from the kinematic conditions at
release if the effect of air resistance is not taken into
account and if the centre of the ball is assumed to
represent the centre of mass of the hammer. QOur model
allowed us to break down the difference into two
separate components: air resistance and the inaccurate
identification of the ball centre with the centre of mass
of the hammer. The model also showed that the effects
of air resistance are shared in approximately equal
amounts by the ball and by the cable and handle. The
results suggested that Hubbard’s and de Mestre’s
models overestimate and underestimate, respectively,
the effect of air resistance on the distances of hammer
throws. From a practical standpoint, the predictor
equations obtained in this study will allow researchers
to reconcile the predictions of hammer throw distances
made from the conditions at release with the distances
measured by the officials.
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